
Combinational Equivalence Checking for Threshold Logic
Circuits

Tejaswi Gowda, Sarma Vrudhula, and Goran Konjevod
School of Computing and Informatics, Arizona State University, Tempe AZ

{tejaswi, vrudhula, goran}@asu.edu

ABSTRACT
Threshold logic is gaining prominence as an alternative to
Boolean logic. The main reason for this trend is the availabil-
ity of devices that implement these circuits efficiently (cur-
rent mode, differential mode circuits), as well as the promise
they hold for the future nano devices (RTDs, SETs, QCAs
and other nano devices). This has generated renewed inter-
est in the design automation community to design efficient
CAD tools for threshold logic. Recently a lot of work has
been done to synthesize threshold logic circuits. So far there
has been no efficient method to verify the synthesized cir-
cuits. In this work we address the problem of combinational
equivalence checking for threshold circuits. We propose a
new algorithm, to obtain compact functional representation
of threshold elements. We give the proof of correctness, and
analyze its runtime complexity. We use this polynomial time
algorithm to develop a new methodology to verify threshold
circuits. We report the result of our experiments, comparing
the proposed methodology to the naive approach. We get up
to 189X improvement in the run time (23X on average), and
could verify circuits that the naive approach could not.

Categories and Subject Descriptors: B.6 [Hardware] :
Logic Design ; B.6.3 [Logic Design]: Design Aids – Verifica-
tion.

General Terms: Algorithms, Design, Theory, Verification.

Keywords: EDA, Equivalence checking, Nano devices, Thresh-
old logic.

1. INTRODUCTION
For more than four decades, digital circuits have been im-

plemented by representing Boolean functions as a network of
AND, OR and NOT logic gates, and an enormous amount of
research and development has taken place in synthesis, opti-
mization, testing and verification for such networks. It has
also been known, for an equally long period, that there is
an alternative approach in which the logic primitives are re-
placed by elements of a much larger class of functions known
as threshold logic gates [7, 11, 15]. For instance, each of the
Boolean functions ab(c+d)+cd(a+b) and a(b+c+d)+b(c+
d) + cd, can be realized by a single threshold gate. Thus a
Boolean function, if realized as a network of threshold gates,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

can result in significantly fewer nodes and smaller network
depth. Unfortunately, the lack of an efficient implementa-
tion of a threshold gate during the early history of digital
systems led to the dominance of AND/OR networks, and
consequently, the heavy investment in design tools. CMOS
circuits implementing Boolean logic have higher functional
yield in the presence of process variations, when compared
to threshold circuits. This has also contributed to the popu-
larity of Boolean logic.

The situation is changing in favor of threshold logic. First,
recently there have a number of very efficient implementa-
tions of threshold logic gates in CMOS[4, 3, 2] that have
achieved very high performance and significantly reduced area.
Second, several new and promising nanoscale device tech-
nologies such as resonant tunneling diodes (RTD), quantum
cellular automata (QCA), single electron transistors (SET)
and others, are either fundamentally threshold type devices,
or can be used to efficiently implement threshold logic[16].
Third, methods for network synthesis, optimization, testing
and verification of threshold logic can now benefit from the
knowledge gained over the past two decades through the de-
velopment of the same for AND/OR networks. For these
reasons there has been a renewed interest in developing algo-
rithms for synthesis of threshold networks[1, 19, 18].

Synthesis is the process of transforming one representation
of a function to another, usually to a more detailed, speci-
fication. Closely related to synthesis is equivalence checking
(EC), which entails demonstrating the equivalence of two rep-
resentations. The function of a circuit synthesized by soft-
ware tools needs to be verified against the given functional
specification. In addition, engineering changes that are in-
troduced throughout the design process can introduce errors
in the synthesized circuit. Demonstrating equivalence may
also be required between two different representations of the
same circuit generated at different phases in the design flow.

Equivalence checking of logic networks is a well developed
and mature subject[13]. However, the same is not the case
with threshold networks. In fact, it was only recently [1,
19, 18] that the problem of threshold network synthesis has
started to become a subject of active research. While much
more remains to be done on optimal synthesis, there has been
no work that addresses the problem of verifying these synthe-
sized threshold circuits. To the best of our knowledge, we are
not aware of any non-trivial method to determine the logic
function implemented by a threshold gate. Given the resur-
gence of interest in threshold networks, an efficient method
for checking the equivalence of a threshold network and a
logic network or its functional specification is of great value.

1.1 Main Contributions
We propose the first efficient procedure to determine the

logic function of a threshold gate. The procedure is provably

102



correct and has polynomial total complexity. It generates a
maximally factored form representation of the logic function,
which is very compact. This results in the significant speed-
up(1.25X to 16X) when equivalence checking is done using
BEDs[9]. Moreover the maximally factored form generated
is that of a minimal SOP (which is the complete sum for a
unate function[8]). This results in much smaller representa-
tion using BEDs.

2. BACKGROUND AND PREVIOUS WORK

Definition 1. A threshold element or gate has n binary
inputs x1, x2, . . . , xn, and a single binary output y. Its inter-
nal parameters are a threshold T and weights w1, w2, . . . , wn,
where weight wi, is associated with input xi. The values of
the threshold T and the weights wi (i = 1, 2, . . . , n) may be
any real, finite, positive or negative number [7, 11, 15]. The
input output relation of a threshold gate is defined as follows:

y =

j
1 if

Pn
i=0 wixi ≥ T

0 otherwise

The weighted sum in Equation (1) denotes arithmetic sum-
mation. Note: A threshold function is completely character-
ized by the set of weights W = (w1, . . . , wn) and the thresh-
old T . Hence a threshold function is denoted by the pair
[W ; T ].

Example: Figure 1 shows a three input threshold gate.
The weights associated with inputs a, b, c are −2, 1 and 1
respectively and the threshold T = 1. The gate’s output will
be 1 for all input combinations for which −2a+b+c ≥ 1, and
0 otherwise. If a = 1, then no combination of b and c will
satisfy the inequality. If a = 0 then either b = 1 or c = 1 will
satisfy the inequality. Therefore the logic function realized
by this threshold element is y = a′(b + c).

Figure 1: A threshold element implementing the
function y = a′(b + c)

The algorithm to determine the logic function realized by a
threshold gate does so by generating a maximally factored form.
Below is a list of some basic definitions related to factored
forms. For further details, the reader is referred to Hachtel
et al. [8].
Maximally Factored Form: A factored form is maximally
factored, if

1. for every sum of products, there are no two syntactically
equivalent factors in the product,

2. for every product of sums, there are no two syntactically
equivalent factors in the sums.

Complete Sum: An SOP formula is a complete sum (a sum
of all prime implicants and only prime implicants) iff :

1. no term includes any other term,

2. the consensus of any two terms of the formula either
does not exist or is contained in some other term.

The complete sum of function F is denoted by CS(F ). For
example, the complete sum of ab′ + ab + c is a + c.
Exact Factored Form: An exact factored form of an SOP
is a factored form which when expanded by repeated alge-
braic multiplication only (without absorbing terms), will re-
sult in the original SOP. For example, consider the SOP form
F = ab + bc + ca. The factored form a(b + c + bc) + bc is not
an exact factored form even though F ≡ a(b + c + bc) + bc.
The factored form a(b + c) + bc is an exact factored form of
F .
Iterated Consensus: Iterated consensus is a method, based
on the consensus theorem [8], and generates the complete sum
of a function using any SOP. This method adds to the SOP,
all the consensus terms of all pairs of cubes in the SOP. It
then removes the terms that are present in other terms. This
procedure is repeated until no further consensus is possible.
E.g.: Consider the SOP of F , x1x2+x2

′x3+x2x3x4. Iterated
Consensus(F ) = x1x2 + x2

′x3 + x1x3 + x3x4, the CS(F ).
The problem of demonstrating equivalence of two Boolean

functions f and g, or their combinational circuit representa-
tions, has been extensively studied [13, 12, 14]. The “straight-
forward approach” is to construct an OBDD [6] of f ≡ g,
which reduces to 1 if they are equivalent. The drawback of
this approach is that construction of the OBDDs of f or g
may not be efficient because their size may be exponential in
the number of variables, regardless of the variable ordering
(e.g. multiplier).

An alternative approach is to use to intermediate represen-
tations such as the AND/INVERTER graph [12] or Boolean
Expression Diagram (BED) [9], that allow us to exploit the
structural similarities that exist between the functions being
compared. Since our implementation is based on BEDs [9],
we limit the discussion only to them.

2.1 Boolean Expression Diagram
BED is a data structure obtained by extending the OBDD

representation with operator vertices. A BED is similar to
a logic graph representation of a Boolean circuit, with each
gate replaced by an equivalent operator node and each input
replaced by the corresponding variable node. All variable
nodes are connected to the two terminal nodes (0 and 1).
Figure 2 gives the example of a BED for the miter of the two
circuits that are being compared.

Figure 2: Boolean expression diagram example [9]

A BED representation is not canonical but is polynomial
in size of the original circuit. Equivalence checking of two
functions f and g is done by constructing the BED of their

103



miter [5] ( Figure 3). Hulgaard et al.[9] present efficient
transformations to reduce the size of the miter. The (signif-
icantly) reduced miter, can then be efficiently transformed
into a OBDD [9], resulting in the equivalence check. The
advantage of using BEDs is two fold. First, they provide
for efficient hashing to simplify and speedup identification of
structurally isomorphic parts of the two circuits. Second, it
avoids creating the individual OBDDs for f and g, and con-
structs the OBDD of the reduced BED of the miter directly.
This leads to a significant improvement in performance over
the OBDD based approach. In fact, it often allows equiva-
lence checking of circuits that have exponential size OBDDs.

Figure 3: The miter of circuits F and G.

3. PROBLEM STATEMENT AND APPROACH
The problem addressed in this paper is to determine the

equivalence of two threshold networks f and g. At least one of
f or g is given in the form of a threshold network. The other
may be logic network, a threshold network, or a functional
specification of the circuit. We assume f and g have the
same set of inputs and outputs, i.e., the mapping between
the inputs and outputs of the two circuits is known.

A key step in verifying equivalence of threshold networks is
the determination of the logic function realized by a threshold
gate. Once this is done, then we can construct a logic network
with the threshold gate replaced by its logic function. Then
we can proceed with the construction of the BED of the miter
to determine equivalence of the two networks.

The naive way to determine the logic function of a thresh-
old gate is to try all 2n input combinations and determine the
on-set of the function, and generate a SOP representation.
One of the features of threshold gates is that they permit ef-
ficient realization (both in area and delay) of gates with large
fan-in. Hence the naive approach will not be practical. For
instance, consider an n-input majority function which can be
implemented as a single threshold gate. For n = 16, using
the naive approach, takes over six minutes to generate the
logic function and about eight seconds to verify equivalence
(see Section 5). For n = 24, the naive approach takes more
than a day and does not complete execution. In contrast, the
method to be described takes about nine minutes.

Since the subsequent step of equivalence checking relies on
the use of BEDs, it is important to generate a compact logic
network representation of a threshold gate, as this will reduce
the size of the BED. Hence, instead of generating an SOP
form of a threshold gate, it is most important to generate
a maximally factored form. It would be best if we had the
maximal factored form of the minimal SOP (which is the
complete sum for a unate/threshold function[8, 11]). The
algorithm described herein does exactly that – it generates a
maximally factored form of a minimal SOP for a threshold

gate directly, without explicitly enumerating all the minterms
or generating the complete sum.

4. THE ALGORITHM TG2MFF

The algorithm to determine a maximally factored form of a
threshold gate is referred to as TG2MFF. It takes an n-input
threshold function F = [W ; T ], where W = (w1, w2, . . . , wn),
and the support set is X = (x1, x2, . . . , xn). Let W \ wk =
(w1, w2, . . . wk−1, wk+1, . . . , wn). TG2MFF recursively de-
composes F using cofactors. Its pseudo code is given in Al-
gorithm 1.

Algorithm 1: Pseudo code of TG2MFF

Input: F = [W ; T ] is a threshold function
Output: A maximally factored form
TG2MFF(F )

** W = [w1, . . . , wn], X = [x1, . . . , xn] **
** T is the threshold **

(1) if n = 1
(2) if w1 ≥ T and T ≤ 0
(3) return 1;
(4) if w1 ≥ T and T > 0
(5) return x1;
(6) if w1 < T and T ≤ 0
(7) return x1

′;
(8) if w1 < T and T > 0
(9) return 0;
(10) else
(11) if

P
∀wj<0 wj ≥ T

(12) return 1;
(13) if

P
∀wj>0 wj < T

(14) return 0;
(15) ** wk is the largest absolute weight **;
(16) F1 = [W \ wk, T − wk];
(17) F2 = [W \ wk, T ];
(18) if wk > 0
(19) return xk· TG2MFF(F1) + TG2MFF(F2);
(20) else
(21) return TG2MFF(F1) +xk

′· TG2MFF(F2);

Statements 2 through 9 constitute the terminal cases and
are easily verified. The other two terminal cases (statements
11 to 14) can be verified using the fact that all minterms
are in the on-set of 1 and no minterm is in the on-set of
0. Selecting a variable whose absolute weight is maximum is
necessary in order to obtain a maximally factored form.

Example: Consider F (a, b, c) ≡ [2, 1,−1; 2], with wa =
2, wb = 1, wc = −1 and T = 2. Applying TG2MFF we get:

F = [2, 1,−1; 2] = a · [1,−1; 0] + [1,−1; 2]

= a{b[−1;−1] + [−1; 0]} + 0 = a{b(1) + c′}
= a(b + c′)

It can be seen that [2, 1,−1; 2] is a feasible assignment for
the function a(b + c′).

4.1 Proof of Correctness
As can be seen, TG2MFF is very simple. However, the

proof of correctness, which is essential, is not obvious. We
first state a useful property of the co-factors of a threshold
function. The proof of this appears in [15].

104



Lemma 1. Let | wk |≥| wi |, ∀i. Suppose that F is positive
unate in xk. Let CS(F ) = Axk + B. Then A + B = A.

Proof. Refer to Theorem 5.1.7 (pg. 121) in [15], from
which the proof follows.

Lemma 1 is also true if F is negative unate in the variable
with the maximum weight. The proof is similar.

Lemma 2. Let F ≡ [W ; T ]. Algorithm TG2MFF(F ) gen-
erates an exact factored form of CS(F ).

Proof. We first show, by induction, that the factored
form generated by TG2MFF evaluates to the Boolean func-
tion represented by [W ;T ]. It is trivial to verify that for the
terminal cases (n = 1), TG2MFF produces a factored form
that evaluates to same function as [w, T ].

Let wk be the weight largest in magnitude, and assume
wk > 0. The proof for wk < 0 is similar. From Equation 1
we see that setting xk = 1 and xk = 0 yields [W \wk; T −wk]
and [W \ wk; T ], respectively. Assume that TG2MFF, when
supplied with [W \ wk; T − wk] and [W \ wk; T ], produces
the factored forms for Fxk and Fxk

′ , which are the positive
and negative cofactors of F . Examining the pseudo code,
TG2MFF when supplied with [W ; T ] produces the factored
form xkFxk + Fxk

′ . We want to show that this evaluates to
the function denoted by [W ; T ].

Let F be the function that [W ;T ] represents. By Shannon
decomposition, F = xkFxk + xk

′Fxk
′ . Since F is positive

unate in xk, CS(F ) = Axk + B. Computing the cofactors
of F using CS(F ) results in Fxk = A + B and Fxk

′ = B.
By Lemma 1, A + B = A. Therefore, Fxk = A. Hence
CS(F ) = xkFxk +Fxk

′ . We have shown that what TG2MFF
computes, evaluates to CS(F ), which is a representation of
F .

We now show that TG2MFF produces an exact factored
form. Since CS(F ) = Axk + B, A and B must each be com-
plete sums. By induction, TG2MFF produces exact factored
forms for [W \ wk; T − wk] and [W \ wk; T ]. These, if multi-
plied out would be the complete sums A and B, respectively.
Therefore, xk[W \wk; T−wk]+[W \wk; T ] is an exact factored
form of CS(F ).

Theorem 1. TG2MFF generates a maximally factored form
of the complete sum of the given threshold function.

Proof. The factorization F = Q · D + R, obtained by
dividing F by D (to get quotient Q and remainder R. Q,
D and R are repeatedly factored), will result in a maximally
factored form, if the following two conditions hold [8]:

1. If Q is a single cube then no literal in Q occurs in any
cubes of R, and

2. If Q has more than one cube, then there is no factor of
Q that is also a factor of R.

We prove that, the two conditions sufficient for maximal
factorization are satisfied by the TG2MFF algorithm. Let
F ≡ [W ;T ], and wk be a largest magnitude weight. As
before, we assume wk > 0. The proof of wk < 0 is the same.

By factoring out xk in CS(F ) we get CS(F ) = Axk + B.
Note that B ≤ A since A + B = A by Lemma 1.

Case 1: Suppose A is a single cube. Since B ≤ A, B =
AC, where C = C1 + C2 + · · · + Cn. Therefore F = A(xi +
C1 +C2 + · · ·+Cn). Since A is a single cube, it must have at

least one literal, say y. A = Qy. Hence F = Qy(xk + C1 +
C2 + · · · + Cn).

A one-point of F is Q = 1, y = 1, xk = 0, Ci = 1, Cj =
0, i �= j, for some i, j. ThereforeX

�∈Q

w� + wy +
X
�∈Ci

w� ≥ T

Since wk ≥ wy , X
�∈Qi

w� + wk +
X
�∈Ci

w� ≥ T

This implies that that y = 0 is in the onset of F , which is not
possible. Therefore A cannot be a single cube. Hence the first
condition required for a maximal factorization is satisfied.

Case 2: Now suppose A has at least two cubes and A and
B have a common factor. Therefore, let A = (X1+X2+ · · ·+
Xa)(Y1 + Y2 + . . . Yb) and B = (X1 + X2 + · · · + Xa)(Z1 +
Z2 + . . . Zc).

Note because the factorization is algebraic, none of the Xi

and Yi have a common literal and none of the Xi and Zi have
no common literal. Rewriting F , we have

F = (X1 + . . . + Xa)[(Y1 + . . . + Yb)xk + (Z1 + . . . + Zc)]

A one-point of F is Zi = 1, Xj = 1, Zp = 0, Xq = 0, xk = 0,
for some i, j, and ∀p �= i,∀q �= j. Hence,

X
�∈Zi

w� +
X

�∈Xj

w� ≥ T.

X
�∈Zi

w� + wXj1
+ . . . + wXjd

+ · · · + wXjr
≥ T.

Since wk ≥ w�,∀� εXj .
Replacing wXjd

, by wk, we obtain

X
�εZk

w� + wXj1
+ wXj2

+ . . . wk + · · · + wXjr
≥ T.

This implies that Xj = 0, Zi = 1, xk = 1, Zp = 0, for some i,
and ∀j, every p �= i belongs to the onset of F , which is not
possible. Therefore A cannot have a factor that is a factor
of B, when A has more than one cube. Hence TM2MFF
produces a maximally factored form of the complete sum of
F , using the feasible weight assignment of F .

4.2 The Verification Procedure
The equivalence checking procedure starts with two thresh-

old networks. The maximally factored form of each thresh-
old element in the network is obtained by the algorithm
TG2MFF. These factored forms are used to construct the
BED for each output of the two functions. As mentioned
earlier the correspondence between the outputs of the two
functions is known. This information is used to construct
the BED of the miter for each output pair. The ROBDD
of the miter is then obtained by using the BED package[17].
The BED package has efficient algorithms to convert a BED
into an equivalent ROBDD. The outputs are equivalent if the
ROBDD of the miter is the constant 1. If all outputs of the
two circuits are verified to be equivalent then the entire cir-
cuit is equivalent. To verify two circuits when one of them
is Boolean and the other is threshold, a similar approach is
followed.

105



An Example: Consider the threshold circuit shown in
Figure 4. Assume that a synthesis tool generated this circuit
when it was given the following specification:

f = d(ab′ + ac′ + b′c); e = (a + b)(a′ + b′).
To verify the two circuits by the method proposed, we first

get the factored form of each node in the threshold circuit.
Using TG2MFF algorithm, we get the following factored
forms, for each node: X2 = d(b′ + c′); f = X2(c + a); X1 =
a′b′; X0 = X1 + ab; e = X0′.

Figure 4: A generated threshold circuit

Using these factored forms and the circuit specification,
BEDs of the miters are constructed. Since the circuits being
compared here have two outputs we get two miters (root 1
and root 2 in Figure 5). The ROBDD of these two miters are
constructed using the BED package. In our case the ROBDD
of root 1 and root 2, turn out to be the constant 1. Thus
we can conclude that the threshold circuit synthesized is ac-
cording to the specification. The verification of two threshold
circuits is done in a similar way.

Figure 5: Example of threshold circuit verification

4.3 Complexity Analysis
TG2MFF generates a maximally factored from given a sin-

gle threshold element. Hence its time complexity depends
only on the size of the input and output, the size of the out-
put being much larger than that of its input. Consequently,
the time complexity is expressed in terms of the size of both
inputs and outputs. This is typically done for algorithms,
whose output size is much larger than the input size [10].

Let n and N be the number of literals in the input and
the output respectively. When a terminal case (statements
2 − 9 and 11 − 14) is encountered TG2MFF halts the re-

cursion and in the non-terminal case (statements 15 − 21),
it continues the recursion. At each stage (whether terminal
or non-terminal) TG2MFF spends O(n) time. This includes
the checking for terminal cases and the time taken to invoke
the next stage. At each non-terminal stage a new literal is
added to the generated factored form. Thus the number of
non-terminal stages is O(N).

Each non-terminal stage can generate at most two terminal
stages. Since the number of non-terminal stages is bounded
by N , the number of terminal stages is also O(N). Thus
the number of invocations of the algorithm (sum of terminal
and non-terminal stages) is O(N). As said earlier since the
algorithm spends O(n) in each stage, the total complexity of
TG2MFF is O(nN). Hence the total complexity of TG2MFF
is polynomial in the combined size of input and output. Af-
ter the Boolean factor form is generated the BED generation
can be done in linear time, since BED is just another repre-
sentation of the factor form [9].

5. EXPERIMENTAL RESULTS
The few synthesis methods that have appeared in the liter-

ature recently [1, 18] generate circuits with high fan-in gates.
However due to the unavailability of these tools and bench-
marks for threshold logic, we generated our own benchmark
circuits using the existing MCNC circuits. Since the bottle-
neck of the naive verification procedure (e.g. exhaustive enu-
meration of minterms) when applied to a threshold network is
the fanin of gates and not the number of gates, we generated
threshold networks with large fanin threshold elements. We
used the directed acyclic graph representation of each MCNC
benchmark circuit and replaced each node with a threshold
element. This provided a complex threshold network. The
weights and threshold of each threshold element were gener-
ated randomly.

Once the threshold networks were constructed, an equiva-
lence check of each circuit with itself was done, to examine
the running time of two procedures (TG2MFF vs exhaustive
enumeration). After deriving the logic function, the BED
tool was used to check the equivalence. The experiments
were run on a Sun Fire V880 machine with 16GB RAM.

Table 1 lists the running time required for verifying the
circuits by the proposed and naive method. There are two
columns corresponding to each method. The first is the run-
time to generate the function and the second is the time taken
for the BED based verification. As seen from the Table,
TG2MFF is more than an order of magnitude faster than
the naive method. TG2MFF verified the 24 input majority
gate in nine minutes, whereas the naive approach could not
complete execution even after twenty four hours. TG2MFF
takes much longer to generate the factor form of majority-24,
when compared to the time taken to generate the factor form
for majority-16, even though the input to the algorithm in
the former case is only 1.5 times that of the latter case. This
is because of the large differences in their factor forms (the
output of TG2MFF).

TG2MFF also reduces the time required for the BED based
verification. It runs 22X faster on average and speeds up the
BED based verification by 5X on average (for circuits that
could be verified by both methods). The first speed up is be-
cause of the polynomial total complexity of TG2MFF. The
second speed up is due to the compact function representa-
tion produced by the algorithm. We note here that the fac-
tored form produced by TG2MFF is compact in two ways.

106



Table 1: Runtime Comparison
Benchmark Inputs/ Avg. Max. A : TG2MFF B : BED C : Naive D : BED C / A D / B

Circuits Outputs Fanin Fanin (sec) (tg2mff) (sec) (sec) (naive) (sec)
f51m-t 14 / 11 5 10 0.093 0.040 0.137 0.050 1.47 1.25
z4ml-t 19 / 9 6 10 0.099 0.040 0.181 0.060 1.83 1.5
cmb-t 19 / 15 3 6 0.116 0.040 0.218 0.080 1.88 2
cu-t 24 / 21 3 6 0.210 0.060 1.075 0.200 5.12 3.33

pcle-t 16 / 4 3 6 0.090 0.040 0.123 0.050 1.37 1.25
sct-t 47 / 36 3 6 0.126 0.040 0.239 0.070 1.90 1.75

majority-8 8 / 1 8 8 0.342 0.120 7.957 1.140 23.27 9.5
cht-t 9 / 1 4 6 0.459 0.130 22.149 1.760 48.25 13.54

cm152a-t 8 / 8 11 11 0.140 0.050 1.078 0.290 7.70 5.8
ttt2-t 7 / 4 3 9 0.110 0.040 0.417 0.140 3.79 3.5
x2-t 10 / 7 5 12 0.084 0.030 0.154 0.050 1.83 1.67

9symml-t 11 / 1 5 13 0.146 0.060 1.109 0.120 7.60 2
majority-16 16 / 1 16 16 1.975 0.470 374.168 7.790 189.45 16.57
majority-24 24 / 1 24 24 413.994 92.540 > 1 day – – –

Average
Improvement 22.73X 4.9X

First because it is the factored form of the minimal SOP
(the complete sum for a unate function). Secondly, because
of the maximal factorization, the generated BED is compact.
It can be observed that the time required for verification by
the naive approach, depends on the fan-in of the individual
gates and not necessarily on the number of gates. Example:
Even though f51m-t has 8 gates it can be verified within a
second, whereas majority-24, which has only one gate could
not be verified in a day. This is because of the huge fan-in of
the one gate in the majority-24 circuit.

6. CONCLUSION
In this paper we presented a new algorithm, TG2MFF, to

generate a compact functional representation of a threshold
element, and a proof of its correctness. TG2MFF has poly-
nomial time complexity in the combined size of input and
output. We also demonstrated the use of this algorithm to
solve the problem of combination equivalence checking for
threshold circuits. To the best of the our knowledge this is
the first non-trivial threshold circuit verification methodol-
ogy. The methodology can be further enhanced to improve
performance by incorporating hashing in the recursion algo-
rithm, to reduce redundant computations. The experiments
we did on a number of generated threshold circuits show
that the methodology gives up to 189X improvement in run-
time as compared to the naive equivalence checking method.
TG2MFF can be used to design better methods for decom-
position, synthesis and verification of threshold circuits.

7. REFERENCES
[1] M. Avedillo and J. Quintana. A Threshold Logic

Synthesis Tool for RTD Circuits. In Euromicro
Symposium on Digital System Design, 2004.

[2] V. Beiu et al. VLSI implementations of threshold
logic-a comprehensive survey. In IEEE Transactions on
Neural Networks, volume 14, 2003.

[3] Y. Beiu et al. Differential Implementations of
Threshold Logic Gates. In Proceedings of the IEEE
International Symposium on Signals, Circuits and
Systems, 2003.

[4] S. Bobba and I. Hajj. Current-Mode Threshold Logic
Gates. In Proc. of ICCD, 2000.

[5] D. Brand. Verification of Large Synthesized Designs. In
Proc. ICCAD, 1993.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. In IEEE Transactions on
Computers, volume 35, 1986.

[7] M. Dertouzos. Threshold Logic : A Synthesis Approach.
The MIT Press, 1965.

[8] G. D. Hachtel and F. Somenzi. Logic Synthesis and
Verification Algorithms. Boston: KAP, 1996.

[9] H. Hulgaard et al. Equivalence Checking of
Combinational Circuits using Boolean Expression
Diagrams. In IEEE Transactions on CAD, July 1999.

[10] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley, 2005.

[11] Z. Kohavi. Switching and Finite Automata Theory.
New York: McGraw-Hill Book Company, 1970.

[12] A. Kuehlmann and F. Krohm. Equivalence Checking
Using Cuts and Heaps. In Proc. of DAC, 1997.

[13] A. Kuehlmann and C. A. van Eijk. Logic Synthesis and
Verification, chapter Combinational and Sequential
Equivalence Checking. KAP, 2001.

[14] W. Kunz and D. Pradhan. Recursive Learning: A New
Implication Technique for Efficient Solution to CAD
Problems— Test, Verification and Optimization. In
IEEE Transactions on CAD, 1994.

[15] S. Muroga. Threshold Logic and Its Applications. New
York: WILEY-INTERSCIENCE, 1971.

[16] S. K. Shukla and I. R. Bahar. Nano, Quantum and
Molecular Computing. KAP, Norwell, MA, USA, 2004.

[17] P. F. Williams, H. Hulgaard, and H. R. Andersen.
Boolean Expression Diagram Tool – Version 2.5.

[18] L. Zhang. Threshold Logic Network Synthesis Suite.
Master’s thesis, Delft University of Technology, 2005.

[19] R. Zhang et al. Threshold Network Synthesis and
Optimization and Its Application to Nanotechnologies.
In IEEE Transactions on CAD, January 2005.

107


